USN

15MAT41
Fourth Semester B.E. Degree Examination, June/July 2018
Engineering Mafhematics - IV
Time: 3 hrs.
Max. Marks: 80
Note: 1. Answer any FIVE full questions, choosing one full question from each module.
2. Use of statistical tables is permitted.

Module-1

1 a. Use Taylor's series method to find y at $\mathrm{x}=1.1$, considering terms upto third degree given that $\frac{d y}{d x}=x+y$ and $y(1)=0$. (05 Marks)
b. Using Rurige-Kutta method, find $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x} ; y(0)=1$, taking $h=0.2$.
(05 Marks)
c. Given $\frac{d y}{d x}=x^{2}-y, y(0)=1$ and the values $y(0.1)=0.90516, y(0.2)=0.82127$, $y(0.3)=0.74918$, evaluate $y(0.4)$, using Adams-Bashforth method. (06 Marks)

OR

2 a. Using Euler's modified method, find $y(0.1)$ given $\frac{d y}{d x}=x-y^{2}, y(0)=1$, taking $h=0.1$.
(05 Marks)
b. Solve $\frac{d y}{d x}=x y ; y(1)=2$, find the approximate solution at $x=1.2$, using Runge-Kutta method.
(05 Marks)
c. Solve $\frac{d y}{d x}=x-y^{2}$ with the following data $y(0)=0, y(0.2)=0.02, y(0.4)=0.0795$, $y(0.6)=0.1762$, compute y at $x=0.8$, using Milne's method.
(06 Marks)

Module-2

3 a. Using Runge-Kutta method of order four, solve $y^{\prime \prime}=y+x y^{\prime}, y(0)=1, y^{\prime}(0)=0$ to find $y(0.2)$.
(05 Marks)
b. Express the polynomial $2 x^{3}-x^{2}-3 x+2$ in terms of Legendre polynomials. (05 Marks)
c. If α and β are two distinct roots of $J_{n}(x)=0$ then prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0$, if $\alpha \neq \beta$.
(06 Marks)
OR
4 a. Given $y^{\prime \prime}=1+y^{\prime} ; y(0)=1, y^{\prime}(0)=1$, compute $y(0.4)$ for the following data, using Milne's predictor-corrector method.
$y(0.1)=1.1103 \quad y(0.2)=1.2427 \quad y(0.3)=1.399$
$y^{\prime}(0.1)=1.2103 \quad y^{\prime}(0.2)=1.4427 \quad y^{\prime}(0.3)=1.699 . \quad$ (05 Marks)
b. Prove that $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
(05 Marks)
c. Derive Rodrigue's formula $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]$.
(06 Marks)

$$
1 \text { of } 2
$$

Module-3

5 a. Derive Cauchy-Riemann equations in polar form.
b. Evaluate $\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$ where C is the cirele $|z|=3$, using Cauchy's residue theorem.
c. Find the bilinear transformation which maps $\varnothing=\infty, i, 0$ on to $w=0, i, \infty$.

05 Marks)
(06 Marks)

OR

6 a. State and prove Cauchy's integral formula.
b. If $u=\frac{\sin 2 x}{\cosh 2 y+\cos 2 x}$, find the corresponding analytic function $f(z)=u+i v$.
c. Discuss the transformation $w=z^{2}$.
(06 Marks)

Module-4

7 a. Derive mean and standard deviation of the binomial distribution.
(05 Marks)
b. If the probability that an individual will suffer a bad reaction from an injection of a given serum is 0.001 , determine the probability that out of 2000 individual (i) exactly 3 (ii) more than 2 individuals will suffer a bad reaction.
(05 Marks)
c. The joint probability distribution for two random variables X and Y is as follows:

	Y	-3	-2	4
X				
1	0.1	0.2	0.2	
3	0.3	0.1	0.1	

Determine: i) Marginal distribution of X and Y
iii) Correlation of X and Y
ii) Covariance of X and X
(06 Marks)
OR
8 a. Derive mean and standard deviation of exponential distribution.
(05 Marks)
b. In an examination 7% of students score less than 35% marks and 89% of students score less than 60% marks. Find the mean and standard deviation if the marks are normally distributed. Given $\mathrm{P}(0<\mathrm{z}<1.2263)=0.39$ and $\mathrm{P}(0<\mathrm{z}<1.14757)=0.43$.
(05 Marks)
c. The joint probability distribution of two random variables X and Y is as follows:

Y	X	-4	2	7
1	$1 / 8$	$1 / 4$	$1 / 8$	
5	$1 / 4$	$1 / 8$	$1 / 8$	

Compute: i) $\mathrm{E}(\mathrm{X})$ and $\mathrm{E}(\mathrm{Y})$
ii) $\mathrm{E}(\mathrm{XY})$
iii) $\operatorname{COv}(\mathrm{X}, \mathrm{Y})$
iv) $\rho(\mathrm{X}, \mathrm{Y})$
(06 Marks)

Module-5

9 a. Explain the terms: i) Null hypothesis (i) Type I and Type II errors.
(05 Marks)
b. The nine items of a sample have the values $45,47,50,52,48,47,49,53,51$. Does the mean of these differ significantly from the assumed mean of 47.5 ?
(05 Marks)
c. Given the matrix $\mathrm{A}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)$ then show that A is a regular stochastic matrix. (06 Marks) OR
10 a. A die was thrown 9000 times and of these 3220 yielded a 3 or 4 , can the die be regarded as unbiased?
(05 Marks)
b. Explain: i) Transient state
ii) Absorbing state
iii) Recurrent state
(05 Marks)
c. A student's study habits are as follows. If he studies one night, he is 70% sure not to study the next night. On the other hand, if he does not study one night, he is 60% sure not to study the next night. In the long run, how often does he study?
(06 Marks)

CBCS Scheme

USN

Fourth Semester B.E. Degree Examination, June/July 2018
Analysis of Determinatte Structures
Time: 3 hrs.
Max. Marks: 80
Note: 1. Answer any FIVE full questions, choosing one full question from each module.
2. Assume any missing data, if any.

1 a. Determine the degree of static indeterminacy for the following structures [Fig.Q.1(a)].
(08 Marks)
A

(i)

(iii)

(ii)

(iv)

Fig.Q1(a)
b. Determine the forces in all the members of a truss shown in the Fig.Q.1(b) by method of joints and tabulate the results.
(08 Marks)

Fig.Q1(b)

OR
2 a. Differentiate between statically determinate and indeterminate structures. (06 Marks)
b. State the assumptions made in the analysis of truss.
c. A truss of span 9 m is loaded as shown in Fig.Q.2(c). Find the forces in the members marked 1,2 and 3 .
(08 Marks)

Fig.Q.2(c)

Module-2

3 a. Determine the slope at supports and maximum deflection of a simply supported beam subjected to UDL throughout the span 'L'. Use Double Integration Method.
(08 Marks)
b. A cantilever of length 2 m carries a point load of 20 kN at the free end and another load of 20 kN at its centre. If $\mathrm{E}=10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8} \mathrm{~mm}^{4}$ for the cantilever, then determine by moment-area method, the slope and deflection at the free end. Refer Fig.Q.3(b). (08 Marks)

Fig.Q.3(b)

OR

4 a. Compute the deflection under concentrated load for the beam shown in Fig.Q.4(a) by using Macaulay's method
(08 Marks)

Fig.Q.4(a)
b. A cantilever beam AB of length 2 m is carrying a point load 10 kN at ' B '. The moment of inertia for the right half of the cantilever is $10^{8} \mathrm{~mm}^{4}$ where as that for the left half is 2×10^{8} mm^{4}. If $\mathrm{E}=2 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$, find the slope and deflection at the free end of the cantilever. Refer Fig.Q.4(b). Use Conjugate Beam Method.
(08 Marks)

Module-3

5 a. Derive the expression for the strain energy stored in a beam due to flexure.
(06 Marks)
b. Determine the vertical deflection at ' C ' in the frame shown in Fig.Q.5(b). Take $\mathrm{E}=200 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$ and $\mathrm{I}=3 \times 10^{7} \mathrm{~mm}^{4}$. Use Strain - Energy method.

Fig.Q.5(b)
OR
6 a. Find the central deflection of a simply supported beam carrying a point load at mid span shown in Fig.Q.6(a) by using Unit Load method.
(06 Marks)

Fig.Q.6(a)
b. The cross-sectional area of the members is as indicated in Fig.Q.6(b). Using Strain - Energy method, find the strain energy stored due to loading. Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{m}^{2}$.
(10 Marks)

Fig.Q.6(b)

Module-4

7 a. A three hinged parabolic arch hinged at the springing and crown points has a span of 40 m and central rise of 8 m . It carries a UDL of $20 \mathrm{kN} / \mathrm{m}$ over the left half of the span together with a concentrated load of 100 kN at the right quarter span point. (Centre of right span). Find the reactions at the supports, normal thrust and radial shear at a section 10 m from left support.
(08 Marks)
b. A cable of span 20 m and dip 4 m carries a UDL of $20 \mathrm{kN} / \mathrm{m}$ over the whole span. Find: i) Maximum tension in the cable; ii) Minimum tension in the cable; iii) The length of the cable.
(08 Marks)

OR

8 a. A three hinged parabolic arch of span 20 m and central rise of 5 m carries a point load of 200 kN at 6 m from left hand support as shown in Fig.Q.8(a).
i) Find the reaction at the supports A and B.
ii) Draw the bending moment diagram for the arch and indicate the position of maximum bending moment.
(10 Marks)

Fig.Q.8(a)
b A cable, supported on piers 80 m apart at the same level, has a central dip of 8 m . Calculate the maximum tension in the cable, when it is subjected to UDL of $30 \mathrm{kN} / \mathrm{m}$ throughout the length. Also determine the vertical force on the piers, if the back stay is inclined at 60° to the vertical and cable passes over a pulley.
(06 Marks)

Module-5

9 a. Define a Influence line diagram. What are the uses of ILD?
(06 Marks)
b. Determine the reaction R_{A} by using ILD (influence line diagram) for beam loaded as shown in Fig.Q.9(b).
(10 Marks)

Fig.Q.9(b)

OR

10 a. Draw the influence line diagram for shear force at a section for a simply supported beam subjected to single point load.
(06 Marks)
b. Draw the ILD for shear force and bending moment for a section 5 m from left end of a simply supported beam 20 m long. Hence calculate the maximum SF and maximum BM at the section due to an UDL of length 8 m and intensity $10 \mathrm{kN} / \mathrm{m}$.
(10 Marks)

çcscilini
 USN

 Fourth Semester B．E．Degree Examination，June／July 2018
 Analysis of Determinate Structures

Time： 3 hrs ．

Note：1．Answer any FIVE full questions，choosing one full question from each module． 2．Assume any missing data suitably．

Module－1

1 a．Distinguish between Statically Determinate Beams and Indeterminate Beams with examples．
b．Define Degree of freedom．What is the degree of freedom for a（i）Fixed support（ii）Hinged support．
（03 Marks）
c．Determine static and kinematic indeterminacy for the following shown in Fig．Q1（c）．

Fig．Q1（c）
（08 Marks）

OR

2 a．Find the forces in all members of the pin－jointed truss shown in Fig．Q2（a）by method of joints．
（08 Marks）

b．Determine the nature and magnitude of forces in members FE，FD，CD by method of sections for the truss shown in Fig．Q2（b）．
（08 Marks）

Fig．Q2（b）

1 of 3

Module-2

3 a. Derive Moment Curvature equation.
(06 Marks)
b. A beam of length 6 m is simply supported at its ends and carries a point load of 40 kN at a distance of 4 m from the left support. Find the slopes at the supported ends and deflection under the load by Maculay's method.
(10 Marks)

OR

4 a. Find the slope and deflection at the free end of the cantilever beam shown Fig.Q4(a) by moment area method.
(08 Marks)

Fig.Q4(a)
b. Find the defiection under the concentrated load for the beam shown in Fig.Q4(b) using conjugate beam method. $\mathrm{EI}=40000 \mathrm{kN}-\mathrm{m}^{2}$.
(08 Marks)

Fig.Q4(b)

Module-3

5 a. State (i) Castigliano's theorems
(ii) Principal of virtual work.
(08 Marks)
b. Determine the vertical deflection of joint C of the truss shown in Fig.Q5(b). Take $\mathrm{E}=200 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$ and cross sectional area of each bar as $150 \times 10^{-6} \mathrm{~m}^{2}$.
(08 Marks)

Fig.Q5(b)

OR
6 a. Determine the deflection of the cantilever beam shown in Fig.Q6(a) at its free end, by Castigliano's method. Take EI $=12000 \mathrm{Nm}^{2}$.
(06 Marks)

Fig.Q6(a)
b. Determine the vertical and horizontal deflection at end C of the bent frame shown in Fig.Q6(b) by unit load method. Take $E=200 \mathrm{GPa}$ and $\mathrm{I}=6(10)^{7} \mathrm{~mm}^{4}$.
(10 Marks)

Fig.Q6(b)

Module-4

7 A three hinged parabolic arch has a span of 24 m and a central rise of 4 m . It carries a concentrated load of 75 kN at 18 m from the left support and uniformly distributed load of $45 \mathrm{kN} / \mathrm{m}$ over the left half of the portion. Find out the resultant reactions. Also determine the bending moment, normal thrust and radial shear at a section 6 m from the left support. (16 Marks)

OR

8 A suspension cable of snap 100 m and dip 10 m carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ over the full span. Find
(i) Maximum and minimum Tension in the cable and its inclination.
(ii) Minimum required cross sectional area of the cable if the allowable stress is 280 MPa .
(iii) Length of the cable
(iv) Vertical and horizontal forces transmitted to the supporting pylons (a) if the cable passed over a smooth pulley (b) if the cable is clamped to a saddle with roller on the top of the pier.
The anchor cable makes 30° to the horizontal at the pylons.
(16 Marks)

Module-5

9 A simple girder of 20 m span is traverssed by a moving uniformly distributed load of 6 m length with an intensity of $20 \mathrm{kN} / \mathrm{m}$ from left to right. Find the maximum bending moment and maximum positive and negative shear forces at sections 4 m from left support. Also find the absolute maximum bending moment that may occur anywhere in the girder.
(16 Marks)

OR

10 Using relevant influence line diagram find (i) Maximum bending moment (ii) The maximum positive and negative shear forces at 4 m from left support of a simply supported girder of span 10 m , when a train of 4 wheel loads of $10 \mathrm{kN}, 15 \mathrm{kN}, 30 \mathrm{kN}$ and 30 kN spaced at $2 \mathrm{~m}, 3 \mathrm{~m}$ and 3 m respectively cross the span left to right with 10 kN load leading. [Refer Fig.Q10]
(16 Marks)

Fig.Q10

Fourth Semester B.E. Degree Examination, June/July 2018 Applied Hydraulics

Time: 3 hrs .
Max. Marks: 80
Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. What is meant by Dimensional Homogeneity? Give example.
(06 Marks)
b. The Frictional Torque (T) of a Disc of diameter (D) rotating at a speed (N) in a fluid of viscosity (μ) and density (ρ) in a turbulent flow using dimensional analysis prove $T=D^{5} \mathrm{~N}^{2} \rho \phi\left[\frac{\mu}{\mathrm{D}^{2} \mathrm{~N} \rho}\right]$.
(10 Marks)

OR

2 a. Explain three types of similarities in model analysis.
(06 Marks)
b. A ship 300 m long moves in a sea water, whose density is $1030 \mathrm{~kg} / \mathrm{m}^{3}$, A $1: 100$ model of this ship is to be tested in a wind tunnel. The velocity of air in the wind tunnel around the model is $30 \mathrm{~m} / \mathrm{s}$ and the resistance of the model is 60 N . Determine the velocity of ship in sea water and also the resistance of the ship in sea water. The density of air is $1.24 \mathrm{~kg} / \mathrm{m}^{3}$. Take the kinematic viscosity of sea water and air as 0.012 stokes and 0.018 stokes respectively.
(10 Marks)

Module- 2

3 a. Explain classification of flow in open channel.
(06 Marks)
b. Derive conditions for most economical rectangular channel.
(04 Marks)
c. A trapezoidal channel has side slopes of $1 \mathrm{H}: 2 \mathrm{~V}$ and the slope of bed is 1 in 1500 . The area of the section is $40 \mathrm{~m}^{2}$. Find the most economical dimensions of channel. Also determine the discharge of the channel. Take $\mathrm{C}=50$.
(06 Marks)

OR

4 a. Explain with sketch the specific energy curve.
(06 Marks)
b. The discharge of water through a rectangular channel of width 8 m is $15 \mathrm{~m}^{3} / \mathrm{s}$, when depth of flow of water is 1.2 m . Calculate:
i) Specific energy of flowing water.
ii) Critical depth and critical velocity.
iii) Value of minimum specific energy.
(10 Marks)

Module-3

5 a. Derive equation of a hydraulic jump in a horizontal rectangular channel.
(10 Marks)
b. A hydraulic jump forms ai the downstream end of a spillway carrying $17.93 \mathrm{~m}^{3} / \mathrm{s}$ discharge. If the depth before jump is 0.8 m , determine the depth after jump and energy loss. (06 Marks)

OR

6 a. Explain following slope profiles: i) Critical slope
ii) Mild slope
iii) Steep slope also draw profiles of M1, M2 and M3.
b. Derive expression for the length of backwater curve.
(06 Marks)
(10 Marks)

Module 4

7 a. Derive expression for force and work done on a curved plate, which is moving in the direction of jet.
(06 Marks)
b. A jet of water having a velocity of $40 \mathrm{~m} / \mathrm{s}$ strikes a curved vane which is moving with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The jet makes an angle of 30° with the direction of motion of vane at inlet and leaves at angle of 90° to the direction of motion of vane at outlet. Draw the velocity triangles at inlet and outlet and determine the vane angles at inlet and outlet so that the water enters and leaves the vanes without shock.
(10 Marks)

OR

8 a. Explain classification of Turbines.
(06 Marks)
b. The Penstock supplies water from a reservoir to the pelton wheel with a gross head of 500 m . One-thirc of gross head is lost in friction in the penstock. The rate of flow of water through the nozzle fitted at the end of penstock is $2 \mathrm{~m}^{3} / \mathrm{s}$. The angle of deflection of the jet is 165°. Determine the power given by the water to the runner and also hydraulic efficiency take speed ratio as 0.45 and coefficient of velocity as 1 .
(10 Marks)

Module-5

9. a. Explain with a neat sketch the working of a inward flow reaction turbine (Francis turbine).
(06 Marks)
b. A Kaplan turbine runner is to be designed to develop 9100 kW . The net available head is 5.6 m . If the speed ratio is 2.09 , flow ratio is 0.68 , overall efficiency is 86% and the diameter of the boss is $1 / 3 \times$ diameter of the runner. Find the diameter of the runner, its speed and specific speed of the turbine.
(10 Marks)
OR
10 a. Explain components and working of a centrifugal pump.
(06 Marks)
b. A centrifugal pump having outer diameter $=2$ times the inner diameter and running at 1000 RPM works against a total head of 40 m . The velocity of flow through the impeller is constant and equal to $2.5 \mathrm{~m} / \mathrm{s}$. The vanes are set back at an angle of 40° at outlet. If the outer diameter of the impeller is 500 mm and width at outiet is 50 mm , determine: i) Vane angle at inlet ii) Work done by impeller on water/sec iii) Manometric efficiency.
(10 Marks)

Fourth Semester B.E. Degree Examination, June/July 2018 Concrete Tecinnology

Time: 3 hrs.
Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module.
 2. IS-10262 mix design code is allowed.

Module- 1

1 a. Why is concrete the most widely used engineering material?
(04 Marks)
b. What is an admixture? Name different types of admixtures, (04 Marks)
c. Explain the manufacture of cement by dry process, with neat flow chart.
(08 Marks)

OR

2 a. What are Bogue's compounds? Explain the influence of $\mathrm{C}_{2} \mathrm{~S}$ in strength gaining process.
(06 Marks)
b. Name the different tests on cement.
(04 Marks)
c. Explain briefly the action of accelerator and super plasticizers in the concrete mix, also name any two accelerators used in industry.
(06 Marks)

Module-2

3 a. What is workability? Explain the factors affecting workability.
(08 Marks)
b. Explain good and bad practices of making of fresh concrete.
(08 Marks)

4 a. What is segregation? How to prevent segregation in the concrete mix?
(08 Marks)
b. Name the tests conducted on workability of concrete.
(04 Marks)
c. What is curing? Name the methods of curing.
(04 Marks)

Module-3

5 a. What is strength of concrete? What are the factors affecting the strength of concrete?
(08 Marks)
b. Define creep, what are the factors affecting the creep of concrete.
(08 Marks)

OR
6 a. How do you define durability? What are the factors improves the durability of concrete and explain briefly?
(08 Marks)
b. What is sulphate attack? How to minimize sulphate attack? Also mention its action with equations.
(08 Marks)
Module-4
7 a. Explain the main factors on which the IS-10262 mix design depends.
(08 Marks)
b. Draw flow chart of IS code mix design.

OR

8 It is required to design a M_{35} grade concrete mix having a slump of the order of $150-175 \mathrm{~mm}$ for pile foundations of a structure. Use IS:10262-Indian standard recommended guidelines to estimate preliminary mix proportions. Consider very severe exposure condition during the service life of the structure.
Data:
I) Size of aggregate $=10 \mathrm{~mm}$ to 20 m
II) Specific gravity of aggregate $=2.67$
III) Moisture content $=1$ percent
IV) Absorption $=0.5$ percent
V) Fine aggregate fineness modulus $=2.80$ (grading zone I)
VI) Specific gravity $=2.62$
VII) Moisture content $=4.1$
VIII) Absorption $=1 \%$
IX) Cement OYe grade 53
X) Specific gravity of cement $=3.15$.

Other conditions
i) Standard deviation $=2 \mathrm{MPa}$
ii) \quad Air content $=4$ to 5%
iii) Maximum allowable w/c ratio $=0.45$
iv) Minimum cement content $=340 \mathrm{~kg} / \mathrm{m}^{3}$
v) Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
vi) Bulk density of

Cement $=1450 \mathrm{~kg} / \mathrm{m}^{3}$
Fire aggregate $=1700 \mathrm{~kg} / \mathrm{m}^{3}$
Coarse aggregate $=1800 \mathrm{~kg} / \mathrm{m}^{3}$.

Module-5

9 a. What is RMC? What are the factors on which the property of RMC depends? (08 Marks)
b. What is light weight concrete? Name the aggregates used as light weight aggregate? Explain its property.
(08 Marks)

OR

10 a. What is self compacting concrete? How it is different from high performance concrete?
(04 Marks)
b. What are the different types of fibers used in fiber reinforced concrete?
c. Explain maximum and minimum values of warkability values measured in L-box. V-tunel and flow test. Explain the above tests briefly.
(08 Marks)

GBCS SCHEME

USN

15CV45

Fourth Semester B.E. Degree Examination, June/July 2018 Basic Geotechnical Engineering

Time: 3 hrs .

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module.

2. Missing data, if any, may be suitably assumed and clearly stated.

Module- 1
1 a. With the help of phase diagrams, explain: i) Dry soil iii) Saturated soil.
ii) Partially saturated soil
(06 Marks)
b. 500 g of dry soil was subjected to a sieve analysis. The weight of soil retained on each sieve is as follows:

I.S. Sieve size	Wt. of soil, g	I.S. Sieve size	Wt. of soil. g
4.75 mm	10	212μ	40
2.00 mm	165	150μ	30
1.00 mm	100	75μ	50
425μ	85		

Plot the grain size distribution curve and determine the following:
i) Percentage of gravel, coarse sand, medium sand, fine sand and silt - clay fraction as per IS : 1498-1970.
ii) Effective size
iii) Uniformity coefficient
iv) Coefficient of curvature
v) The gradation of the soil.
(10 Marks)

2 . List the consistency limits and their
(04 Marks)
b. Explain the Indian standard soil classification system and mention the use of plasticity chart.
(06 Marks)
c. The weight of soil coated with the thin layer of paraffin wax was 6.90 N . The soil alone weighs 6.83 N . When the sample is immersed in water it displaces $360 \mathrm{~m} \ell$ of water. The specific gravity of soil is 2.73 and that of wax is 0.89 . Find the void ratio and degree of saturation, if the moisture content is 17%.
(06 Marks)

Module- 2

3 a. List and explain various soil structures.
(08 Marks)
b. The following results refers to compaction test as per IS light compaction :

Water content (\%)	8.5	12.2	13.75	15.5	18.2	20.2
Wt. of wet soil (kg)	1.8	1.94	2.00	2.05	2.03	1.98

If the specific gravity of soil is 2.7 and volume of compaction mould is 1000 CC . Plot the compaction curve and obtain the maximum dry unit weight and optimum moisture content.
(08 Marks)

OR

4 a. With the help of neat sketches, explain any two clay minerals.
(08 Marks)
b. During compaction iest on soil having specific gravity of 2.7 gave a maximum dry unit weight of $18 \mathrm{kN} / \mathrm{m}^{3}$ and the water content of 15%. Determine the degree of saturation, air content and percentage air voids at the maximum dry unit weight. What would be the theoreticai maximum dry unit weight corresponding to zero air void at the optimum water content?
(08 Marks)

Module-3

5 a. Explain : i) Superficial velocity in soil.
b. A soil stratum with permeability $\mathrm{K}=5 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$ overlies an impervious stratum. The impervious stratum lies at a depth of 18 m below the ground surface. A sheet pile wall penetrates 8 m into the permeable soil stratum. Water stands to a height of 9 m on upstream side and 1.5 m on downstream side above the surface of soil stratum. Sketch the flow net and determine i) Quantity of seepage ii) Seepage pressure at ' P ' located 8 m below the surface of soil stratum and 4 m away from the sheet pile wall on its upstream side.
(10 Marks)

OR

6 a. What is a Flownet? What are its characteristics and uses?
(06 Marks)
b. A clay strata 6 m thick laying below sand layer 5 m thick. The water table is located at a depth of 2 m from surface. The sand has porosity of 38% and specific gravity of 2.7 . The sand above the water table may be taken as dry. The water content of clay layer if 60% and $\mathrm{G}=2.65$. Calculate total stress, pore water pressure and effective stress at the middle of clay layer and draw the distribution diagram.
(10 Marks)

Module-4

7 a. Explain Mass - Spring analogy theory of consolidation of soil.
(06 Marks)
b. A saturated soil stratum 5 m thick lies above an impervious stratum and below a pervious stratum. It has a compression index of 0.25 and coefficient of permeability $3.2 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$ void ratio at stress $150 \mathrm{kN} / \mathrm{m}^{2}$ is 1.9 . Compute i) Change in void ratio due to increase of stress to $200 \mathrm{kN} / \mathrm{m}^{2}$ ii) Settlement due to increased load iii) Time required for 50% consolidation.
(10 Marks)

OR

8 a. With the help of neat sketch, explain determination of pre-consolidation pressure by Casagrende's method.
(06 Marks)
b. Differentiate between Normally consolidated and Over consolidated soils.
(04 Marks)
c. A 3 m thick layer of saturated clay in the field under a surcharge loading with achieve 90% consolidation in 75 days in double drainage conditions. Find the co-efficient of consolidation of the clay.
(06 Marks)

Module-5

9 a. Explain Mohr - Coulomb failure theory of soil.
(06 Marks)
b. Compute the shear strength of soil along a horizontal plane at a depth of 5 m in a deposite of sand having the following particulars: Angle of internal friction, $\phi=36^{\circ}$; Dry unit weight, $\quad \gamma_{\mathrm{d}}=17 \mathrm{kN} / \mathrm{m}^{3} ; \quad$ Specific gravity, $\mathrm{G}=2.7$.
Assume the ground water table is at a depth of 2.4 m below the ground level. Also determine change in shear strength if water ievel raises to ground level.
(10 Marks)

OR

10 a. Explain the types of shear test based on different drainage conditions.
(06 Marks)
b. In a drained triaxial compression test, a saturated sandy sample failed at a deviator stress of $360 \mathrm{kN} / \mathrm{m}^{2}$ and cell pressure of $100 \mathrm{kN} / \mathrm{m}^{2}$. Find the effective shear parameters of sand. If another identical sample is tested under a cell pressure of $200 \mathrm{kN} / \mathrm{m}^{2}$, determine graphically the deviator stress at which the specimen fails. Check the results analytically.
(10 Marks)

USN

Fourth Semester B.E. Degree Examination, June/July 2018 Advanced Surveying

Time: 3 hrs .
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define degree of a curve. Establish the relationship between degree of a curve and its radius.
(04 Marks)
b. Two tangents intersect each other at a chainage of $59+60$, the deflection angle being $50^{\circ} 30^{\prime}$. It is required to connect the two tangents by a simple curve of 15 chain radius. Taking peg interval of 100 links, calculate the necessary data for setting out the curves by Rankine's method of deflection angles. Take length of the chain as $20 \mathrm{~m}=100$ links. Also write a brief procedure for setting out the curve.
(12 Marks)

OR

2 a. Distinguish between a compound curve and a reverse curve with sketches. (96 Miarks)
b. A compound curve consists of two simple circular of radii 350 m and 500 m , respectively and is to be laid out between two tangents $\mathrm{T}_{1} \mathrm{I}$ and $I \mathrm{~T}_{2} . \mathrm{PQ}$ is the common tangent and D is the point of compound curvature. The angles IPQ and 乌QP are 55° and 25° respectively. Given the chainage of point of intersection as 1800.00 m , calculate the chainages of $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and D .
(10 Marks)

Module-2

3 a. What are the important factors to be considered in selection of site for a base line? (06 Marks)
b. From a triangulation satellite station 'Q' 5.80 m away from the main station A , the following directions were observed:
A : $0^{\circ} 0^{\prime} 0^{\prime \prime}, \mathrm{B}: 132^{\circ} 18^{\prime} 30^{\prime \prime}, \mathrm{C}: 232^{\circ} 24^{\prime} 6^{\prime \prime}$, and D : $296^{\circ} 6^{\prime} 11^{\prime \prime}$.
The inter connected base lines AB, AC and AD were measured as $3265.50 \mathrm{~m}, 4022.20 \mathrm{~m}$ and 3086.40 m respectively. Determine the directions of AB, AC and AD .
(10 Marks)

OR
4 a. Define the terms :
i) True error
ii) Residual error
iii) Conditioned equation
iv) Indirect observation.
(04 Marks)
b. Three observed angles α, β and γ from a station \underline{P} with probable errors of measurement are given below:
$\alpha=78^{\circ} 12^{\prime} 12^{\prime \prime} \pm 2^{\prime \prime}$,
$\beta=136^{\circ} 48^{\prime} 30^{\prime \prime} \pm 4^{\prime \prime}$,
$\gamma=144^{\circ} 59^{\prime} 8^{\prime \prime} \pm 5^{\prime \prime}$
Determine their corrected values.
(12 Marks)

Module- ${ }^{3}$

5 a. Define the terms :
i) Celestial sphere
ii) Hour angle
iii) Prime vertical
iv) Latitude of a place.
(04 Marks)
b. Find the shortest distance between two places A and B given that their latitudes are $12^{\circ} \mathrm{N}$ and $13^{\circ} 04^{\prime} \mathrm{N}$ with respective fongitudes $72^{\circ} 30^{\prime} \mathrm{E}$ and $80^{\circ} 12^{\prime} \mathrm{E}$.
(12 Marks)

OR

6 a. Briefly explain the solution of spherical triangle by Napiers rule of circular parts. (06 Marks)
b. The standard tinne meridian in India is $80^{\circ} 30^{\prime}$ E. If the standard time of place is $20^{\mathrm{H}} 24^{\mathrm{M}}$ 06^{S}, find the local mean time of two places having the longitudes as $20^{\circ} \mathrm{E}$ and $20^{\circ} \mathrm{W}$ respectively.
(10 Marks)

Module-4

7 a. With a neat sketch, derive the expression for the scale of a vertical photograph. (08 Marks)
b. A line $A B 2.00$ kilometer long, lying at an elevation of 500 m measures 8.65 cm on a vertical photograph of focal length 20 cm . Determine the scale of the photograph at an average elevation of 800 m .
(08 Marks)

OR

8 a. Define the terms :
i) Tilt
ii) Exposure station
iii) Principal point
iv) ISO centre.
(08 Marks)
b. Mention the reasons for photograph over lap. Justify the same.

Module-5

9 a. Define EDM.
(03 Marks)
b. Explain the working of remote sensing equipment. (05 Marks)
c. What are the advantages of LIDAR technology?

OR

10 a. Explain the working of total station.
(08 Marks)
b. Explain the civil engineering applications in GIS and remote sensing.
(08 Marks)
\square
Fourth Semester B.E. Degree Examination, June/July 2018 Additional Mathematics - II
Time: 3 hrs .
Max. Marks: 80
Note: Answer any FIVE full questions, choosing one full question from each module.

Module- 1

1 a. Find the rank of the matrix $\left[\begin{array}{cccc}5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0\end{array}\right]$ by reducing to echelon form. (06 Marks)
b. Use Cayley-Hamilton theorem to find the inverse of the matrix $\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$. (05 Marks)
c. Apply Gauss elimination method to solve the equations $x+4 y-z=-5 ; x+y-6 z=-12$; $3 x-y-z=4$
(05 Marks)

OR

2 a. Find all the eigen values and eigen vector corresponding to the largest eigen value of
$\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$.
(06 Marks)
b. Find the rank of the matrix by elementary row transformations $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right]$.
(05 Marks)
c. Solve the system of linear equations $x+y+z=6 ; 2 x-3 y+4 z=8, x-y+2 z=5$ by Gauss elimination method.
(05 Marks)

Module-2

3 a. Solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$ by the method of variation of parameters.
(06 Marks)
b. Solve $\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=0$, given $x(0)=0, \frac{d x}{d t}(0)=15$.
(05 Marks)
c. Solve $\left(D^{2}+5 D+6\right) y=e^{x}$.
(05 Marks)
OR
4 a. Solve by the method of undetermined coefficients $\left(D^{2}-2 D+5\right) y=25 x^{2}+12$. (06 Marks)
b. Solve $\left(D^{2}+3 D+2\right) y=\sin 2 x$.
(05 Marks)
c. Solve $\left(D^{2}-2 D-1\right) y=e^{x} \cos x$.
(05 Marks)

Module-3

5
a. Find the Laplace transforms of,
(i) $t \cos ^{2} t$
(ii) $\frac{1-\mathrm{e}^{-\mathrm{t}}}{\mathrm{t}}$
(06 Marks)
b. Find the Laplace transforms of, (i) $e^{-2 t}(2 \cos 5 t-\sin 5 t)$
(ii) $3 \sqrt{t}+\frac{4}{\sqrt{t}}$.
(05 Marks)
c. Express the function, $f(t)=\left\{\begin{array}{ll}t, & 0<t<4 \\ 5, & t>4\end{array}\right.$ in terms of unit step function and hence find its Laplace transform.
(05 Marks)

OR

6 a. Find the Laplace transform of the periodic function defined by $f(t)=E \sin \omega t, 0<t<\frac{\pi}{\omega}$ having period $\frac{\pi}{\omega}$.
(06 Marks)
b. Find the Laplace transform of $2^{t}+t \sin t$.
(05 Marks)
c. Find the Laplace transform of $\frac{2 \sin t \sin 5 t}{t}$.
(05 Marks)

Module-4

7 a. Using laplace transforms method, solve $y^{\prime \prime}-6 y^{\prime}+9=t^{2} e^{3 t}, y(0)=2, y^{\prime}(0)=6 . \quad(06$ Marks)
b. Find the inverse Laplace transforms of, (i) $\frac{s^{2}-3 s+4}{s^{3}}$
(ii) $\frac{\mathrm{s}+3}{\mathrm{~s}^{2}-4 \mathrm{~s}+13} \quad$ (05 Marks)
c. Find the inverse Laplace transforms of, (i) $\log \left(\frac{s+1}{s-1}\right) \quad$ (ii) $\frac{s^{2}}{(s-2)^{3}}$
(05 Marks)

OR

8 a. Solve the simultaneous equations $\frac{d x}{d t}+5 x-2 y=t, \frac{d y}{d t}+2 x+y=0$ being given $x=y=0$ when $\mathrm{t}=0$.
(06. Marks)
b. Find the inverse Laplace transforms of $\cot ^{-1}\left(\frac{s}{2}\right)$.
(05 Marks)
c. Find the inverse Laplace transforms of $\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}$.
(05 Marks)

Module-5

9 a. For any three arbitrary events $\mathrm{A}, \mathrm{B}, \mathrm{C}$ prove that, $\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})-\mathrm{P}(\mathrm{B} \cap \mathrm{C})-\mathrm{P}(\mathrm{C} \cap \mathrm{A})+\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$ (04 Marks)
b. A class has 10 boys and 5 girls. Three students are selected at random, one after the other. Find probability that, (i) first two are boys and third is girl (ii) first and third boys and second is girl. (iii) first and third of same sex and the second is of opposite sex.
(06 Marks)
c. In a certain college 25% of boys and 10% of girls are studying mathematics. The girls constitute 60% of the student body. (i) what is the probability that mathematics is being studied ? (ii) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (iii) a boy?
(06 Marks)

OR

10 a. State and prove Bayes theorem.
(04 Marks)
b. A problem in mathematics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved?
(06 Marks)
c. A pair of dice is tossed twice. Find the probability of scoring 7 points. (i) Once, (ii) at least once (iii) twice.
(06 Marks)

